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Abstract. Given a finite set of points in the plane and a forbidden region R, we want to find a point
X 62 int(R), such that the weighted sum to all given points is minimized. This location problem is
a variant of the well-known Weber Problem, where we measure the distance by polyhedral gauges
and allow each of the weights to be positive or negative. The unit ball of a polyhedral gauge may
be any convex polyhedron containing the origin. This large class of distance functions allows very
general (practical) settings – such as asymmetry – to be modeled. Each given point is allowed to
have its own gauge and the forbidden region R enables us to include negative information in the
model. Additionally the use of negative and positive weights allows to include the level of attraction
or dislikeness of a new facility. Polynomial algorithms and structural properties for this global
optimization problem (d.c. objective function and a non-convex feasible set) based on combinatorial
and geometrical methods are presented.
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1. Introduction

We denote with Ex = fEx1; . . . ; ExMg the given finite set of existing facilities,
represented by points in R2 , where Exm = (am; bm) for m 2M := f1; . . . ;Mg.

The new facility (or more precisely its co-ordinates) we want to find is denoted
by X . Every existing facility Exm has assigned a positive or negative value not
equal to zero denoted by wm, for all m 2M.

Since we plan to find an optimal location for the new facility, we have to have
a criterion, which tells us something about the quality of the solution.
We will be concerned with:X

m2M

wmdm(Exm;X) =: f(X) :

The corresponding optimization problem is

min
X2F�R2

f(X) ;
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which in literature is called Weber- or Minisum- or continuous Median-Problem
(see [7] or [13]) with attraction and repulsion.

In the definition of f(X), dm(Exm;X) means the distance between the points
Exm and X , where we allow different kinds of distances for different existing
facilities.
A possible interpretation of the weights wm is as follows:

� wm > 0 can be interpreted as transportation cost per distance unit, that means
the greater the distance between Exm and the new location is, the higher are
the costs; in other words: a existing facility with weight wm > 0 attracts the
new location because of the increasing costs with increasing distance.

� wm < 0 may be a measure for the disapproval of neighbors, who don’t like
the new location in their neighborhood, that means these costs decrease with
increasing distance, in other words: an existing facility with wm < 0 repulses
the new location (the objective function is the better the farer away the new
facility is located).

� wm = 0 means that the costs do not depend on the location of the new facility,
so we can neglect the existing facilities with wm = 0 (therefore we can assume
wm ? 0).

The set F � R
2 over which we minimize is called the feasible region.

In the classical Weber- or Minisum- or continuous Median-Problem we have
F = R

2 . The set of globally optimal solutions to this optimization problem (with
F = R

2 ) is denotedX �(f). The set of locally optimal solutions is denotedX loc(f).
If we introduce a connected set R � R

2 as a forbidden region, where it is not
permitted to place a new facility, we have F = R

2nint(R).
Now optimizing f becomes complicated, sinceF need not be convex any more.

But from a practical point of view it is a necessary extension of the classical location
model, since forbidden regions appear everywhere: nature reserves, lakes, places
we don’t possess, etc.

These problems are called restricted location problems and have been studied
for example in [16], [8], [1], [9], and [17]. The set of globally optimal solutions to
these restricted location problems is denotedX �R(f), to emphasize the influence of
the forbidden region R.

In the following we assume X �(f) � int(R) to avoid the trivial case where
X �(f) \ X �R(f) 6= ;, i.e. one of the optimal solutions of the unrestricted problem
is also a solution of the restricted one.

Only a few papers have looked at extensions to the Weber problem as a global
optimization problem (see [3], [18], [2], [19], [14] and [20]).

The existing papers can be roughly divided into two categories. Papers in
the first category ([3], [18]) focus on structural results for general settings. The
main topic is to find conditions for the finiteness of the globally optimal solution.
The papers in the second category ([2], [19], [14] and [20]) apply general d.c.
optimization techniques to develop iterative algorithms with a good convergence
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rate. The benefit of these approaches is that quite general cost functions can be
taken into account.

In contrast to all these papers, this text focusses on the combinatorial structure of
the Weber problem which can be established for a broad class of distance functions.
This combinatorial structure allows us to show discretization results and therefore
combinatorial techniques can be used instead of convergence results. Additionally,
we also look at the Weber problem with different types of forbidden regions, which
means that we solve d.c. problems over a non-convex feasible region. To our best
knowledge nobody has discussed the Weber Problem with positive and negative
weights and forbidden regions yet.

The rest of the paper is organized as follows: In the second section we will
introduce a classification scheme for location problems, state some basic properties
and define the class of distance functions we will investigate in this paper. Section 3
discusses the principal techniques we will use to solve unrestricted Weber Problems
with positive and negative weights. In Section 4 we present an efficient algorithm
to solve restricted Weber Problems for a broad class of distance functions with
convex and non-convex forbidden regions. Section 5 shows how for a specific
class of distance functions better complexity bounds can be obtained. The paper
ends with some conclusions.

2. Definitions and Basic Concepts

2.1. A CLASSIFICATION SCHEME FOR LOCATION PROBLEMS

As one notices, the nomenclature for location problems is not unique. Therefore,
we introduce in the following a classification scheme for location problems, which
should help to get an overview over the manifold area of location problems.

We use a scheme which is analogous to the one introduced successfully in
scheduling theory. The presented scheme for location problems was developed in
[10], [11] and [12]. We have the following five position classification

pos1=pos2=pos3=pos4=pos5 ;

where the meaning of each position is explained in the following table:
If we do not make any special assumptions in a position, we indicate this by

a �. For example, a � in Position 4 means that we are talking about any distance
function. A � in Position 3 indicates that we have wm � 0, which is the usual
assumption in location theory.

Using this classification the Weber- or Minisum- or continuous Median-Problem
with attraction and repulsion is written as 1=P=wm ? 0=�=

P
. The restricted Weber

problem with attraction and repulsion is written as 1=P=R; wm ? 0= � =
P

.
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Position Meaning Usage (Examples)

1 number of new facilities

2 type of problem
P planar location problem
D discrete location problem
G location problem on a network

3 special assumptions and restrictions
wm = 1 all weights are equal
R a forbidden region

4 type of distance function
l1 Manhattan metric
 a general gauge

5 type of objective function

P
Median problem

max Center problem

2.2. ABOUT THE DISTANCE FUNCTIONS

Let B be a compact convex set in R
2 containing the origin in its interior and let

X 2 R
2 . The gauge of X with respect to B is then defined as

(X) := inf f� > 0 : X 2 �Bg :

This definition dates back to [15].
 is a convex function and if B is symmetric with respect to the origin  defines

a norm and B is the corresponding unit ball.
Now we can define the distance from X to Y (remember that we do not

necessarily have symmetry) by

d(X;Y ) := (Y �X) :

In this paper we allow each existing facility Exm, m 2 M to have its own
unit ball Bm, m 2M, being a convex polytope with extreme points Ext(Bm) :=
fem1 ; . . . ; emG(m)g and corresponding gauge m, m 2 M. In this case we can
compute m(X) as

m(X) = min

8<:
G(m)X
g=1

�g : X =

G(m)X
g=1

�ge
m
g ; �g � 0

9=;
(see [6]).

Gauges with a polyhedral unit ball are called polyhedral gauges. If, additionally,
the unit ball Bm is symmetric, m is called a block norm.

Let dm1 ; . . . ; dmG(m) be the halflines defined by the endpoint 0 and em1 ; . . . ; eG(m) ,
m 2 M. The set of halflines d1; . . . ; dG(m) is called fundamental directions. By
setting dmG(m)+1 := dm1 we define �mg as the cone generated by dmg and dmg+1. The

translated set X +Bm is denoted BX
m .
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Two well-known block norms belong to the class of lp-norms: The l1 or rectilin-
ear norm and the l1 or maximum norm. The unit ball of the l1 norm is the polyhe-
dron with extreme points f(1; 0); (0;�1); (�1; 0); (0; 1)g and the unit ball of the l1
norm is the polyhedron with extreme points f(1; 1); (1;�1); (�1;�1); (�1; 1)g.

Since there exists a linear norm-converting map T between the two block
norms l1 and l1 (see [7]), we can use all algorithms which we will develop for l1
automatically for l1 too.

The importance of polyhedral gauges becomes even clearer if one notes that,
since a convex set can be approximated by a convex polyhedron to within any
specified "-degree of tolerance (see [21]), the following results hold.

THEOREM 2.1. The class of polyhedral gauges is dense in the set of all gauges.

COROLLARY 2.2 (see [22]). The class of block norms is dense in the set of all
norms.

In the following we will only look at polyhedral gauges.

2.3. ABOUT THE OBJECTIVE FUNCTION

We can reformulate the objective function f in the following way:

f(X) =
X

m2M+

wmm(X �Exm)�
X

m2M�

(�wm)m(X �Exm) ;

where M+ := fm : wm > 0g and M� := fm : wm < 0g. This type of
functions is well known in global optimization and is called d.c. functions, which
stands for difference of convex functions.

If both index sets M+ and M� are non-empty, the objective function f is
neither convex nor concave, which means there may exist several local minima
and we have to find out which of them is the global one.

It is clear that if the total weight of facilities belonging toM� becomes too large,
the minimum will be �1. This is made more precise in the following theorem:

THEOREM 2.3 (see [3]). Let W :=
X
m2M

wm.

Then the following holds:
� For W > 0 the optimal location is finite,
� For W < 0 the optimal solution is at infinity,
� For W = 0 the result depends on the input data and the metric, so no general

result can be formulated.

We can also give a sufficient condition for the optimality of an existing facility:

THEOREM 2.4 (see [2]). If a m� exists with wm� �
P

m2M

m6=m�
jwmj, then Exm� is

the optimal location.
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414 STEFAN NICKEL AND EVA-MARIA DUDENHÖFFER

As a consequence we only have to look for problems with W � 0, when we
are solving 1=P=wm ? 0=m=

P
.

2.4. LEVEL CURVES AND LEVEL SETS

In the following we will introduce level curves and level sets and reformulate
restricted and unrestricted location problems using these concepts.

For a function h from R
2 to R+ and z 2 R the level curve L=(z) and the level

set L�(z) is defined by

L=(z) := fX 2 R
2 : h(X) = zg

and

L�(z) := fX 2 R
2 : h(X) � zg

respectively.
Using level curves and level sets we can reformulate 1=P=wm ? 0= � = �

and 1=P=R; wm ? 0= � = � .

THEOREM 2.5.

a) z� is the optimal objective value of 1=P=wm ? 0= � =�
, z� = minfz : L=(z) 6= ;g.

b) zF is the optimal objective value of 1=P=R, wm ? 0= � = �
, zF =minfz : L=(z) \ F 6= ;g.

c) In a) and b) L=(z) can be replaced by L�(z).

Using this theorem we can implement a search procedure to values of z until
the optimality conditions are satisfied or any other stopping criterion terminates the
procedure. However this is not very satisfactory but we will see in the following
sections that level curves and level sets lead to efficient discretization procedures
for 1=P=wm ? 0=m=

P
and 1=P=R; wm ? 0=m=

P
.

3. Solving 1=P=wm ? 0=m=
P

Now, we consider the unrestricted problem under polyhedral gauges. We do not
assume the same gauge for every Exm, m 2M.

First the structure of the level curves will be examined.

THEOREM 3.1 (see [17] or [22]).
The polyhedral gauge m is linear over the cone �mg , for g = 1; . . . ; G(m).

Let � = (pm)m2M be a family of numbers such that pm 2 f1; . . . ; G(m)g for
all m 2M and let

C� =
\

m2M

�
Exm + �mpm

�
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Figure 3.1. An example for the set C.

A convex set C , with int(C) 6= ;, is said to be a cell if there exists a family �
such that C� = C (see [5]).

REMARK. Geometrically we obtain all cells if we draw for every Exm 2 Ex all
halflines dg, g = 1; . . . ; G(m) starting at Exm.

The set of all cells is called C. For an example of such a system of cells see
Figure 3.1.

THEOREM 3.2. The level curves of f(X) with polyhedral gauges are linear in
each C 2 C.

Proof. With Theorem 3.1 we have m(X) is linear in each cone �mg . Since all
cells are intersections of such cones, m(X) is linear in each cell C 2 C.

For X 2 C we can therefore write

f(X) =
X
m2M

wmlm(X �Exm) ;

where the lm are linear functions in X . It follows that f(X) = z is linear in C .

It is clear that by definition R
2 = [C2C . Now we can characterize the set of

local optima for 1=P=wm ? 0=m=
P

. 2

THEOREM 3.3.
A connected component of X loc(f) with level z is either
� a complete cell
� a facet of a cell or
� an extreme point of a cell.
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Proof. Follows directly from Theorem 3.2 and the linearity of the objective
function f in a cell. 2

COROLLARY 3.4. For finding X �(f) or X loc(f), it suffices to look at the
O(M 2(maxm2MG(m))2) extreme points of all cells.

Let

H :=
[

m2M

8<:
G(m)[
g=1

Exm + dmg

9=; ;

i.e. the union of all points on halflines in the direction of all Y 2 Ext(BExm
m ) for

all existing facilities. The halflines formed by H are called construction lines. The
set of intersection points generated by H is denoted I . Note that I equals the set
of extreme points of all cells.

EXAMPLE 3.1. We are given four existing facilities Ex1 = (0:5; 0:5), Ex2 =

(3; 9), Ex3 = (7; 3) and Ex4 = (11; 7). The corresponding weights are w1 = 4:1,
w2 = w3 = �1 and w4 = 2:9. Each facility Exm is assigned a different gauge
m, defined by the extreme points of Bm, for m = 1; . . . ; 4, where Ext(B1) =

f(1; 1); (�1; 1); (0;�1)g, Ext(B2) = f(1; 1); (�1; 1); (�1;�1); (1;�1)g,
Ext(B3) = f(0; 1); (�1;�1); (1;�1)g and Ext(B4) = f(0; 1); (�1; 0); (0;�1);
(1; 0)g. To find the set of optimal locations X �(f) , we have to inspect all points
in I . These intersection points together with the corresponding objective value are
given in the following table.

X 2 I (�6; 7) (�2:5; 3:5) (0:5;�3:5) (0:5; 0:5) (1; 7) (3; 9) (5; 7) (6; 6)

f(X) 36.6 58.3 30.3 37.65 49.85 34.05 31.95 60.25

X 2 I (7; 3) (7; 5) (7; 7) (7; 13) (11;�1) (11; 1) (11; 7) (11; 11) (11; 17)

f(X) 36.95 46.25 30.25 66.25 101.45 87.45 39.45 30.65 66.65

From this table we get that the optimal solution is in this example a single point,
X �(f) = f(7; 7)g with objective value 30:25. In Figure 3.2 a graphical represen-
tation of the major part of this example is shown.

4. Solving 1=P=R; wm ? 0=m=
P

4.1. PRINCIPAL TECHNIQUES

To describe a general solution procedure for the restricted problem we need to
know a little bit more about the structure of the level sets of f . Remember that
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Figure 3.2. The existing facilities as well as the major part of the sets H and I of Example
3.1.

we exclude a connected region in R
2 and so we have in general to optimize a

non-convex objective function over a non-convex domain. From Theorem 3.2 we
know that the level curves are piecewise linear independent of the value of W ,
the sum of all weights. For the level sets L�(z) the situation is a little bit more
complicated.

THEOREM 4.1. The level sets L�(z) for the objective function f have the follow-
ing form:

W > 0 The level curves L=(z) are closed polygons and the corresponding level
sets L�(z) are the bounded sets defined by the boundary L=(z).

W < 0 The level curves L=(z) are closed polygons and the corresponding level
setL�(z) is the unbounded exterior of the level curveL=(z), i.e.L�(z) =
R

2nint(L��(z)), where L�� is the level set with respect to �f .
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Proof.

W > 0 By Theorem 2.3 the optimal solution is finite and by Theorem 3.3 the
structure of a local optimum is known. By the piecewise linearity of the
level curves (see Theorem 3.2) and the finiteness of the local optima the
level curves are closed polygons around these local optima and the level
sets have to include these local optima.

W < 0 The validity of the statement follows by multiplying f by �1. Now we
have W > 0 and we are in the first case. Since �f(x) � z is equivalent
to f(x) � �z the result follows. 2

REMARK. For the l1-case, with W = 0, it is shown in [4] that the level curves are
horizontal or vertical lines outside the convex hull of I . (I is the set of intersection
points defined byH). Therefore in the case W = 0 the level curves need not to be
closed anymore.

Now we will look at several types of forbidden regions:
First the forbidden region is assumed to be any bounded convex set, second we
consider any closed polygon (not necessarily convex) and third we look at the
complement of a closed polygon as the forbidden region. In all situations we
distinguish between the three cases W > 0, W < 0 and W = 0. Notice also that
we exclude the trivial case where an optimal solution for the unrestricted problem
is also feasible for the restricted problem, i.e. X �(f) \ F 6= ;.

THEOREM 4.2. X is an optimal solution of 1=P=R; wm ? 0=m=
P

(X 2 X �R(f))
with f(X) = z if and only if there exists a z 2 R, such that

a) X 2 X loc(f) \ F and

z = min
n
f(Y ) : Y 2 X

loc(f) \ F
o

(4.1)

or

b)

L=(z) \ @R 6= ; (4.2)

and

L�(z) � R : (4.3)

Of course, both cases may coincide.
Proof. If Case a) is fulfilled we get the best feasible local minimum which

is then of course globally optimal. For Case b) note that we can conclude from
Theorem 3.2 and Theorem 4.1 that int(L�(z)) = L<(z) for z > z�, where z�

is the global minimum of f . Suppose now (4.2) and (4.3) hold and there is no
X 2 X loc(f) satisfying (4.1). Then every level set with a smaller level than z is
completely infeasible and every level set with a larger level than z is not optimal.
So the cases a) and b) are sufficient for showing X to be optimal.
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Now suppose we have an optimal X with f(X) = z and neither Case a) nor
Case b) holds. We can not have a better locally optimal solution Y 2 F , because
then Case a) would hold. Since X 2 F and also Case b) does not hold we have
that int(L�(z)) \ @R 6= ; and therefore we have feasible points on the boundary
with a better objective value than X . So X can not be optimal if neither Case a)
nor Case b) is fulfilled. 2

Note that the proof does not only hold for the Weber objective function, but also
for other objective functions, like the center objective.

4.2. R IS A CONVEX SET

Here we only have to consider cases with W � 0 because for W < 0 the optimal
solution is not finite. Therefore it is not very restricting if we assume in the following
that the optimal solution is finite.

Based on Theorem 4.2 the following procedure can be used to solve 1=P=R;
wm ? 0= � =

P
.

ALGORITHM 4.1. (Level Curve Approach for Solving 1=P=R; wm ? 0= � =
P

)
1. Find level curve L=(z1) satisfying (4.2) and (4.3).
2. Find level z2 satisfying (4.1).
3. If z1 < z2 let X �R(f) := L=(z1) \ @R.
4. If z1 � z2 let X �R(f) := L=(z2) \ F .

Output: X �R(f).

The level curve approach can be implemented applying a search procedure to
values of z until (4.2) and (4.3) or (4.1) is satisfied or any other stopping criterion
terminates the procedure. This implementation of the procedure is, however com-
putationally unsatisfactory, since there is no finite bound on its time complexity
for finding the exact solution.

On the other hand, this approach leads in the case of polyhedral gauges to
efficient procedures for solving restricted location problems, as we will see in the
following.

THEOREM 4.3. Let W � 0, let R be a bounded convex forbidden region and
let X �(f ) \ F = ;. Then there exists an optimal location X�

R 2 X �R(f) with
X�
R 2 H \ @R or X�

R is the best local minimum in F .

The first part of the proof is analogous to Theorem 5:2 in [8] and the second
part was shown in Theorem 4.2.

So we get the following idea for an algorithm:
Solve the problem with the algorithm for the unrestricted problem; if X �(f )\F 6=

; ! Stop.
For X �(f) \ F = ; we have to determine all feasible local minima and the inter-
section points of @R with the construction lines. By comparison of the objective
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values at these points we find the best feasible solution. If all optimal locations
should be determined and the optimum is at an intersection point H with @R, we
have to compute the level curve and determine the intersection of the level curve
with the boundary of R.

More formally this reads as

ALGORITHM 4.2. (Construction Line Algorithm for the 1=P=R; wm?0=m=
P

)

1. if X �(f) \ F 6= ; then X �R(f) := X �(f) \ F ! Stop.
2. Compute H.
3. Determine fX�

1 ; . . . ;X�
Lg = I \ F .

4. Determine fY1; . . . ; YKg = H \ @R.
5. Let X�

R 2 argminff(Y1); . . . ; f(YK); f(X�
1 ); . . . ; f(X�

L)g and let L be the
level curve through X�

R if X�
R 62 I \ R.

Output: if X�
R 62 I \ R

then X �R(f) := L \ @R

else X �R(f) := L=(f(X
�
R)) \ F .

REMARK. By Theorem 3.3 we can determine all local optima by inspecting all
extreme points of all C 2 C and therefore Step 3 of Algorithm 4.2 is correct.

We have not more than O(M2(maxm2MG(m))2) local optima (see Corol-
lary 3.4) and not more than O(M maxm2MG(m)) intersection points. The evalu-
ation of the objective function takes O(M(maxm2MG(m)). Therefore the algo-
rithm has a complexity of O(M 3(maxm2MG(m))3).

EXAMPLE 4.1. We use the same input data as in Example 3.1. Additionally we
are given R := [4; 9] � [4:5; 8:5]. The intersection points H \ @R together with
the corresponding objective value are given in the following table.

X 2 H \ @R (4; 7) (4:5; 4:5) (7; 4:5) (7:5; 4:5) (9; 7) (8:5; 8:5) (7; 8:5) (4; 8)

f(X) 34.95 31.5 49.75 51.4 34.85 30.4 39.25 41.95

From this table and the table in Example 3.1 reporting the objective values for
all points in I we get that the optimal solution is in this example a single point,
X �R(f) = f(0:5; 0:5) = Ex1g with objective value 30:3. In Figure 4.1 a graphical
representation of this example is shown.

If we change the location of Ex1 to (2; 2) the optimal solution of the modified
restricted location problem is (8:5; 8:5) with objective value 24:25 on the boundary
of R.
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Figure 4.1. Illustration of Example 4.1.

4.3. R IS A BOUNDED POLYGONAL REGION

Let R = P;P any polygon, i.e. not necessarily convex. In this case we have to
extend the candidate set by the set of vertices of the polygon P because of the
following result:

THEOREM 4.4. Let W � 0 (with finite optimal solution for f ) and R = P any
polygon with vertex set V(P) = fV1; . . . ; VNg and let X �(f) \ F = ;.
Then there exists an optimal location X�

R 2 X �R(f) with X�
R 2 H \ @R or

X�
R 2 V(P) or X�

R is the best local minimizer in F .
Proof. Let X�

R 2 @R \ L=(z
�
R) (condition for an optimal location, which is

not a local optimum in F according to Theorem 4.2), C 2 C with X�
R 2 C ,

LC := L=(z
�
R)\C andPViVi+1 defined as the segment between Vi and Vi+1 (facet

of the polygon)
Then we have the following possibilities for X�

R:

Case 1 (see Figure 4.2a) The slope changes at X�
R, so X�

R 2 H.

jogo410.tex; 20/11/1997; 15:02; v.7; p.13



422 STEFAN NICKEL AND EVA-MARIA DUDENHÖFFER

Figure 4.2. Illustrations for the different cases in the proof of Theorem 4.4

Case 2 (see Figure 4.2b) X�
R is a vertex of P .

Case 3 (see Figure 4.2c) LC is a supporting line on P in X�
R and LC � PViVi+1 .

Then there exist two points Y1 and Y2 2 L=(z
�
R) \ @R, where the slope

changes, so we can replace X�
R by Y1 or Y2.

Case 4 (see Figure 4.2d) LC is a supporting line on P in X�
R and LC � PViVi+1 .

Then X�
R can be replaced by Vi or Vi+1.

Case 5 (see Figure 4.2e) LC is a supporting line on P in X�
R, but neither LC �

PViVi+1 nor LC � PViVi+1 (i.e. LC and PViVi+1 overlap). Then there exists
a vertex Vi 2 L=(z

�
R) \ @R and a point Y 2 L=(z

�
R) \ @R, where the

slope changes, so we can replace X�
R in this case too. 2

4.4. R IS THE COMPLEMENT OF A CLOSED POLYGONAL REGION

THEOREM 4.5. Let R := R
2nP with P being a polygon with vertex set V(P) =

fV1; . . . ; VNg, i.e. we have a feasible region F = P for the new location. Further
X �(f) \ F = ;.

jogo410.tex; 20/11/1997; 15:02; v.7; p.14



WEBER’S PROBLEM WITH ATTRACTION AND REPULSION UNDER POLYHEDRAL GAUGES 423

� For W � 0 and if the optimal solution of the unrestricted problem is finite
the following holds: There exists an optimal location X�

R 2 X �R(f) with
X�
R 2 H \ @R or X�

R 2 V(P) or X�
R is a local minimizer in P .

� For W � 0 and if the optimal solution of the unrestricted problem is not finite
we have: There exists an optimal location X�

R 2 X
�
R(f) with X�

R 2 H \ @R

or X�
R 2 V(P) or X�

R is a local minimizer in P .

The proof is analogous to the proof of Theorem 4.4 and is therefore omitted here.

REMARK. We also had to consider the case W < 0, because the solution at
infinity is not feasible.

5. The Rectilinear Case

In this section we will show that for special distance measures better algorithms
can be derived. Therefore we assume in the following that m = l1, for allm 2M.

5.1. SOLVING 1=P=wm ? 0=l1=
P

Now we consider as metric the rectangular distance, so we have dm = l1 for all
m 2 M. In this case the construction lines H are horizontal and vertical lines
through the co-ordinates of the existing facilities. So we get a decomposition of R2

in rectangles. For the objective function we get:

f(X) =
X
m2M

wm(jam � x1j+ jbm � x2j)

=
X
m2M

wmjam � x1j| {z }
:= fa(x1)

+
X
m2M

wmjbm � x2j| {z }
:= fb(x2)

(5.1)

One can see that the original problem can be divided in two equal subproblems,
which can be solved independently:

f�(x) =
X
m2M

wmj�m � xj;where � 2 fa; bg :

Assume without loss of generality �1 < �2 < . . . < �M
The first step is to remove the absolute values, so we determinep(x) := maxfqj�q �
x; q 2Mg and reformulate the objective function:

f�(x) =

p(x)X
m=1

wm(x� �m) +
MX

m=p(x)+1

wm(�m � x)

(5.2)

=

0@p(x)X
m=1

wm �
MX

m=p(x)+1

wm

1Ax�

p(x)X
m=1

wm�m +

MX
m=p(x)+1

wm�m
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Figure 5.1. Example for f�(x) with 4 existing facilities

The objective function is a piecewise linear function, where the slope changes only
at �m (the slope is constant between �m�1 and �m). Therefore, if the minimum is
finite, it can either be at a co-ordinate of an existing facility or — if the slope is 0
between �m�1 and �m — in the whole interval between two successive co-ordinates
of existing facilities.

To make this result clear, we look at the following sketch of f�(x) with 4
existing facilities (Figure 5.1).

Here we can see, that the derivative from the left and the right are important.

Derivatives:

Derivative from the right: f+� (�m) =
mX
i=1

wi �
MX

i=m+1

wi

Derivative from the left: f�� (�m) =
m�1X
i=1

wi �
MX
i=m

wi

It follows:

� f+� (�m�1) = f�� (�m)

� f�� (�1) = �
PM

i=1 wi = �W

� f+� (�M ) =
PM

i=1 wi = W

THEOREM 5.1. We have only the following two possibilities for the set of mini-
mizers X �(f�):

a) f�� (�m�) < 0 and f+� (�m�) > 0. Then X loc(f�) = �m� with wm� > 0.

b) f�� (�m�) < 0; f+� (�m�) = 0 and f+� (~�m�+1) > 0. Then X loc(f�) =

[�m� ; �m�+1] with wm� ; wm�+1 > 0
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Proof.

a) f�� (�m�)<0 ,

 
m��1X
i=1

wi �
MX

i=m�
wi

!
<0 ,

 
�

m��1X
i=1

wi +
MX

i=m�
wi

!
> 0

(1)

f+� (�m�) > 0,

0@m�X
i=1

wi �
MX

i=m�+1

wi

1A > 0 (2a)

(1) + (2a) yields wm� + wm� > 0 , wm� > 0

b) x 2 [�m� ; �m�+1]

f+� (�m�) = 0 ,

0@m�X
i=1

wi �
MX

i=m�+1

wi

1A = 0 (2b)

f+� (�m�+1) > 0 ,

0@m�+1X
i=1

wi �
MX

i=m�+2

wi

1A > 0 (3)

(1) + (2b) yields wm� + wm� > 0 , wm� > 0
(3) � (2b) yields wm�+1 + wm�+1 > 0 , wm�+1 > 0 E

THEOREM 5.2.
a) �m� is a local minimizer , f�� (�m�) < 0 and wm� >

1
2f
�
� (�m�)

b) [�m� ; �m�+1] is a local minimizer , f�� (�m�) < 0; wm� =
1
2f
�
� (�m�)

and wm�+1 > 0
Proof. Using the preceding results the following holds:

f�� (�m�) =
m��1X
i=1

wi �
MX

i=m�
wi

f+� (�m�) =
m�X
i=1

wi �
MX

i=m�+1

wi

So we get:

f+� (�m�)� f�� (�m�) = wm� +wm� = 2wm� , f+� (�m�)

= f�� (�m�) + 2wm�

�m� local minimizer , f�� (�m�) < 0 and f+� (�m�) > 0

f+� (�m�) > 0 , f�� (�m�) + 2wm� > 0 , wm� > �
1
2
f�� (�m�)
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[�m� ; �m�+1] local minimizer, f�� (�m�) < 0; f+� (�m�) = 0 and f+� (�m�+1) > 0

f+� (�m�) = 0 , f�� (�m�) + 2wm� = 0 , wm� = �
1
2
f�� (�m�)

f+� (�m�+1) > 0 , f+� (�m�)| {z }
= 0

+2wm�+1 > 0 , wm�+1 > 0

2

With these results we can now formulate an algorithm. The idea of the algorithm
is as follows: First we check the input data for the conditions of Theorem 2.3 and
Theorem 2.4 respectively. If we do not find a solution by this way, we start the
following procedure: We check iteratively the derivatives of all existing facilities
for finding the local minimizers. As soon as we find a local minimizer, we compare
the value of the objective function with the best value for the objective function we
found before. We update the objective value if the new value is better than the old
one. If two locations with the same objective value exist, we store both of them.
With this O(M logM) procedure we can find all global minimizers.

ALGORITHM 5.1. (Minimization of f�(x))
Input: wm; �m
Output: X �(f�); z��
1. W :=

X
m2M

wm

if W < 0 ! stop: the solution is at infinity
else ! goto step 2.

2. if a wm� > 0 exists with wm� �
P
Mnfm�g jwmj ! stop

Output: X �(f�) = f�m�g and z�� = f�(�m�)

3. if �1 < . . . < �M ! goto step 4.
else! sort the existing facilities and sum up the weights of equal co-ordinates
! ~� = (~�1; . . . ; ~� ~M ); ~w = ( ~w1; . . . ; ~w ~M ) with ~�1 < . . . < ~� ~M

4. f�� (~�1) = �W =: F�

X �(f�) := ;; z�� := f (~�1)

~� ~M+1 :=1

for m = 1; . . . ; ~M do
if F� < 0 and ~wm > �

1
2F

�:
determine f(~�m)
if f(~�m) < z�� : z�� := f(~�m), X �(f�) := f~�mg

if f(~�m) = z�� : z�� := f(~�m), X �(f�) := X �(f�) [ f~�mg

if F� < 0 and ~wm = �
1
2F

� and ( ~wm+1 > 0 or m = ~M ):
determine f(~�m)
if f(~�m) < z�� : z�� := f(~�m), X �(f�) := f[~�m; ~�m+1]g
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if f(~�m) = z�� : z�� := f(~�m), X �(f�) := X �(f�) [ f[~�m; ~�m+1]g

F� := F� + 2 ~wm
m := m+ 1

5. If ~�1 2 X
�(f�) and W = 0 : X �(f�) := X �(f�) [ f(�1; ~�1]g

Output: X �(f�) with objective value z��

To solve the original problem, we use this algorithm for both subproblems and
link the two optimal sets.

ALGORITHM 5.2. (Solution of 1=P=wm ? 0=l1=
P

)
1. Use Algorithm 5.1 for fa(x1) and fb(x2)

! X �(fa); X �(fb); z�a; z�b
Output: z� = z�a + z�b , X �(f) = X �(fa)�X

�(fb)

5.2. SOLVING 1=P=R; wm ? 0=l1=
P

As we have seen in the general case in Algorithm 4.2 we need all local minima of
the unrestricted case. Therefore, we have to modify Step 4 of Algorithm 5.1 in the
following way:

Modification of step 4 of Algorithm 5.1 (Determination of all local optima)
F� := �W

X loc(f�) := ;; zloc� := ;

If W = 0 and ~w1 > 0:
X loc(f�) := f(�1; ~�1]g

zloc� := ff(~�1)g

~� ~M+1 :=1

For m = 1; . . . ;K do

if F� < 0 and ~wm > �
1
2F

�:
X loc(f�) := X loc(f�) [ f~�mg, zloc� := zloc� [ ff(~�m)g

if F� < 0 and ~wm = �
1
2F

� and ( ~wm+1 > 0 or m = ~M ):
X loc(f�) := X loc(f�) [ f[~�m; ~�m+1]g, zloc� := zloc� [ ff(~�m)g

F� := F� + 2wm
m = m+ 1
Output: X loc(f�) set of local minimizer, zloc� objective values

With this modification we get the following O(M2 logM) algorithm:
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ALGORITHM 5.3. (Solution of 1=P=R; wm ? 0=l1=
P

)
Input: wm; Exm
Output: X �R(f), z

�
R

1. Use Algorithm 5.1 with the modification of step 4 for the two subproblems:
We get X loc(fa);X

loc(fb); z
loc
a ; zlocb with jzloca j = o1; jz

loc
b j = o2

2. For k = 1; . . . ; o1; l = 1; . . . ; o2 do:
zlockl := zlocak + zlocbl ; X loc(f) := f

�
alock ; blocl ; zlockl

�
g

3. Sort X loc(f) with zlockl increasing:

!
g

X loc(f) with ~zloc1 � . . . � ~zlocO (O = o1 � o2)

4. Determine the best element(s) gX loc, which is (are) located in F :
X �R(f) :=

�
(~ak� ;~bl�)

	
; z�R := zlock�l�

5. Determine Y := H \ @R; jYj := L

6. for i = 1; . . . ; L do:
determine f(Yi)
(a) if f(Yi) < z�R:

(i) z�R := f(Yi)

(ii) X �R(f) := fYig

(iii) if all optimal solutions should be determined:
� compute L=(z�R) \ @R
� X �R(f) := fXjX 2 L=(z

�
R) \ @Rg

� If W = 0 then compute L=(z�R) \ F and
X �R(f) := fXjX 2 L=(z

�
R) \ Fg

(b) if f(Yi) = z�R
(i) X �R(f) := X �R(f) [ fYig

(ii) if all optimal solutions should be determined:
� compute L=(z�R) \ @R
� X �R(f) := X �R(f) [ fXjX 2 L=(z

�
R) \ @Rg

� if W = 0 then compute L=(z�R) \ F and
X �R(f) := fXjX 2 L=(z

�
R) \ Fg

Output: X �R(f) optimal solution, z�R objective value

5.3. AN ILLUSTRATIVE EXAMPLE

We now give an example for the rectangular metric:
Ex = f(1; 3); (2; 1); (4; 5); (5; 2); (7; 3)g
w = (3; 1;�5;�1; 3) ) W = 1
So we get as objective function:

f(X) = 3
�
j1� x1j+ j3� x2j

�
+
�
j2� x1j+ j1� x2j

�
� 5

�
j4� x1j+ j5� x2j

�
�
�
j5� x1j+ j2� x2j

�
+ 3

�
j7� x1j+ j3� x2j

�
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Figure 5.2. function fa(x1)

a = (1; 2; 4; 5; 7) = ~a with wa = (3; 1;�5;�1; 3) = ~wa
b = (3; 1; 5; 2; 3)) ~b = (1; 2; 3; 5) with ~wb = (1;�1; 6;�5)

fa(x1) = 3j1� x1j+ j2� x1j � 5j4� x1j � j5� x1j+ 3j7� x1j

(see Figure 5.2)

x1 < 1 1 � x1 < 2 2 � x1 < 4 4 � x1 < 5 5 � x1 < 7 7 � x1

p(x1) 0 1 2 3 4 5

fa(x1) �x1 + 1 5x1 � 5 7x1 � 9 �3x1 + 31 �5x1 + 41 x1 � 1

fb(x2) = 3j3� x2j+ j1� x2j � 5j5� x2j � j2� x2j+ 3j3� x2j

(see Figure 5.3)

x2 < 1 1 � x2 < 2 2 � x2 < 3 3 � x2 < 5 5 � x2

p(x) 0 1 2 3 4

fb(x2) �x2 � 8 x2 � 10 �x2 � 6 11x2 � 42 x2 + 8

First we consider the unrestricted case:
Step 4 of Algorithm 5.1 for fa(x1):
Initialization: F+

a := f+a (a1) = 5; X �(fa) := f1g; z�a := 0
m = 2: F+

a := F+
a + 2w2 = 7

m = 3: F+
a = �3
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Figure 5.3. function fb(x2)

m = 4: (�1) < �
1
2(�3); F+

a = �5
m = 5: 3 > 5

2 ! fa(a5) = fa(7) = 6 (> 0)
Output: X �(fa) = f1g; z�a = 0
Algorithm 5.1 applied to fb(x2) yields: X �(fb) = f1; 3g with z�b = �9

So we get the solution for the original problem with Algorithm 5.2:
X �(f) = f(1; 1); (1; 3)g with z� = �9

Next, we introduce a convex forbidden region:
R:=f(x1; x2)j � 6 � x1 � 3;�6 � x2 � 4g

Step 1: X loc(fa) = f1; 7g, zloca = f0; 6g
X loc(fb) = f1; 3g, zlocb = f�9;�9g

Step 2: X loc(f) = f(1; 1;�9); (1; 3;�9); (7; 1;�3); (7; 3;�3)g
Step 3: g

X loc(f) = X loc(f)

Step 4: X �R(f) = f(7; 1); (7; 3)g; z�R = (�3)

Step 5: Intersection points of H with @R
Y =

�
(�6; 1); (�6; 2); (�6; 3)(1; 4); (2; 4); (3; 3); (3; 2); (3; 1);
(2;�6); (1;�6);

	
zY = f�2;�1;�2; 2; 7; 3; 4; 3; 3;�2g

Output: X �R(f) = f(7; 1); (7; 3)g; z�R = (�3)

Now, the forbidden region is the complement of a closed polygonal region:
F = P := f(x1; x2)j3 � x1 � 8; 0 � x2 � 4g
We get V(P) = f(3; 0); (3; 4); (8; 4); (8; 0)g with objective values zV = f4; 14;
9;�1g
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Y = f(3; 1); (3; 2); (3; 3); (4; 4); (5; 4); (7; 4); (8; 3); (8; 2); (8; 1); (7; 0);
(5; 0); (4; 0)g
zY = f3; 4; 3; 21; 18; 8;�2;�1;�2;�2; 8; 11g
The best feasible points are (7,1) and (7,3) with objective value z�R = �3
Solution: X �R(f) = f(7; 1); (7; 3)g and z�R = �3

6. Conclusions

We have shown in this paper how global optimization problems which are in
general very difficult can be solved exactly for special cases in polynomial time.
The methods we used are mainly computational geometry and discretization of
continuous problems. The success of the procedures relies heavily on the structure
of the level sets. Future research topics are extensions to the multi-facility case and
therefore to higher dimensions.
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