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Abstract. Given afinite set of points in the plane and aforbidden region R, we want to find a point
X ¢ int(R), such that the weighted sum to al given pointsis minimized. Thislocation problem is
avariant of the well-known Weber Problem, where we measure the distance by polyhedral gauges
and alow each of the weights to be positive or negative. The unit ball of a polyhedral gauge may
be any convex polyhedron containing the origin. This large class of distance functions allows very
general (practical) settings — such as asymmetry — to be modeled. Each given point is allowed to
have its own gauge and the forbidden region R enables us to include negative information in the
model. Additionally the use of negative and positive weights allows to include the level of attraction
or dislikeness of a new facility. Polynomial algorithms and structural properties for this global
optimization problem (d.c. objective function and a non-convex feasible set) based on combinatorial
and geometrical methods are presented.
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1. Introduction

We denote with Ex = {Ex;,..., Exyr} the given finite set of existing facilities,
represented by pointsin R?, where Ex,, = (am, by,) form € M = {1,..., M}.
The new facility (or more precisely its co-ordinates) we want to find is denoted
by X. Every existing facility Fx,, has assigned a positive or negative value not
equal to zero denoted by w,,,, for al m € M.
Since we plan to find an optimal location for the new facility, we have to have
acriterion, which tells us something about the quality of the solution.
We will be concerned with:

> wmdn(Bzp, X) =1 f(X).
meM
The corresponding optimization problem is

XcFCRr?2
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which in literature is called Weber- or Minisum- or continuous Median-Problem
(see[7] or [13]) with attraction and repulsion.

In the definition of f(X), dy(Exm,, X) means the distance between the points
Ez,, and X, where we alow different kinds of distances for different existing
facilities.

A possible interpretation of the weights w,,, is asfollows:

e w,, > 0 can beinterpreted as transportation cost per distance unit, that means
the greater the distance between E'z,,, and the new location is, the higher are
the costs; in other words: a existing facility with weight w,,, > 0 attracts the
new location because of the increasing costs with increasing distance.

e w,, < 0 may be a measure for the disapproval of neighbors, who don't like
the new location in their neighborhood, that means these costs decrease with
increasing distance, in other words: an existing facility with w,,, < 0 repulses
the new location (the objective function is the better the farer away the new
facility islocated).

¢ w,, = 0 meansthat the costs do not depend on the location of the new facility,
so we can neglect the existing facilities with w,,, = 0 (therefore we can assume
Wy, 2 0).

Theset 7 C R? over which we minimize is called the feasible region.

In the classical Weber- or Minisum- or continuous Median-Problem we have
F = R?. The set of globally optimal solutions to this optimization problem (with
F = R?)isdenoted X*(f). Theset of locally optimal solutionsisdenoted X°¢( ).

If we introduce a connected set R C R? as a forbidden region, where it is not
permitted to place a new facility, we have F = R?\int(R).

Now optimizing f becomescomplicated, since F need not be convex any more.
But fromapractical point of view itisanecessary extension of theclassical location
model, since forbidden regions appear everywhere: nature reserves, lakes, places
we don't possess, etc.

These problems are called restricted location problems and have been studied
for examplein [16], [8], [1], [9], and [17]. The set of globally optimal solutionsto
these restricted location problemsis denoted A’; ( f), to emphasize the influence of
the forbidden region R.

In the following we assume X*(f) C int(R) to avoid the trivia case where
X*(f)NX5(f) # 0, i.e oneof the optimal solutions of the unrestricted problem
is also asolution of the restricted one.

Only afew papers have looked at extensions to the Weber problem as a global
optimization problem (see[3], [18], [2], [19], [14] and [20]).

The existing papers can be roughly divided into two categories. Papers in
the first category ([3], [18]) focus on structural results for general settings. The
main topic isto find conditions for the finiteness of the globally optimal solution.
The papers in the second category ([2], [19], [14] and [20]) apply genera d.c.
optimization techniques to develop iterative algorithms with a good convergence
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rate. The benefit of these approaches is that quite general cost functions can be
taken into account.

In contrast to all these papers, thistext focusseson the combinatorial structure of
the Weber problem which can be established for abroad class of distancefunctions.
This combinatorial structure allows us to show discretization results and therefore
combinatorial techniques can be used instead of convergenceresults. Additionaly,
we also look at the Weber problem with different types of forbidden regions, which
means that we solve d.c. problems over a non-convex feasible region. To our best
knowledge nobody has discussed the Weber Problem with positive and negative
weights and forbidden regions yet.

The rest of the paper is organized as follows: In the second section we will
introduce a classification schemefor location problems, state some basic properties
and definethe class of distancefunctionswewill investigatein this paper. Section 3
discussesthe principal techniqueswewill useto solve unrestricted Weber Problems
with positive and negative weights. In Section 4 we present an efficient algorithm
to solve restricted Weber Problems for a broad class of distance functions with
convex and non-convex forbidden regions. Section 5 shows how for a specific
class of distance functions better complexity bounds can be obtained. The paper
ends with some conclusions.

2. Definitionsand Basic Concepts
2.1. A CLASSIFICATION SCHEME FOR LOCATION PROBLEMS

As one notices, the nomenclature for location problems is not unique. Therefore,
weintroducein the following a classification schemefor location problems, which
should help to get an overview over the manifold area of location problems.

We use a scheme which is analogous to the one introduced successfully in
scheduling theory. The presented scheme for location problems was developed in
[10], [11] and [12]. We have the following five position classification

posl/pos2/pos3/posd/pos5 ,

where the meaning of each position is explained in the following table:

If we do not make any special assumptions in a position, we indicate this by
ae. For example, a e in Position 4 means that we are talking about any distance
function. A e in Position 3 indicates that we have w,,, > 0, which is the usua
assumption in location theory.

Using thisclassification the Weber- or Minisum- or continuous M edian-Problem
with attraction and repulsioniswrittenas1/P/w,, = 0/e/>". Therestricted Weber
problem with attraction and repulsion iswritten as1/P/R, w,, = 0/ e /3.
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Position  Meaning Usage (Examples)

1 number of new facilities

P  planar location problem
2 type of problem D discrete location problem
G location problem on a network

w, =1 al weights are equal

3 specia assumptions and restrictions R a forbidden region
4 type of distance function f Manhattan metric

~ ageneral gauge
5 type of objective function 2. Median prablem

max  Center problem

2.2. ABOUT THE DISTANCE FUNCTIONS

Let B be a compact convex set in R? containing the origin in its interior and let
X € R?. The gauge of X with respect to B is then defined as

y(X):=inf{A>0: X € AB} .

This definition dates back to [15].

v isaconvex function and if B issymmetric with respect to the origin -y defines
anorm and B is the corresponding unit ball.

Now we can define the distance from X to Y (remember that we do not
necessarily have symmetry) by

d(X,Y) =Y — X) .

In this paper we alow each existing facility Ez,,, m € M to have its own
unit ball B,,, m € M, being aconvex polytope with extreme points Ext(B,,) :=
{e’f,...,e’g(m)} and corresponding gauge v,,, m € M. In this case we can
compute y,,, (X) as

G(m) G(m)
Ym(X)=ming > Ay 1 X = Mel?, A >0
g:

1 g=1

(see[6]).

Gaugeswith apolyhedral unit ball are called polyhedral gauges. If, additionally,
the unit ball B,,, is symmetric, ~,, is called ablock norm.

Letd?,..., dgl(m) be the halflines defined by theendpoint Oand ef’, . . ., eg(m),
m € M. The set of halflinesdy, ..., dg(n) is caled fundamental directions. By
setting dg; ., = dy" we define I'f" as the cone generated by dg’ and d', ;. The
translated set X + B,,, isdenoted B, .
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Two well-known block norms belong to the class of /,-norms: Thel or rectilin-
ear norm and the [, or maximum norm. The unit ball of the /1 norm isthe polyhe-
dronwith extremepoints{(1,0), (0,—1), (—1,0), (0, 1) } and theunit ball of the/,
norm is the polyhedron with extreme points { (1, 1), (1, -1), (-1, -1),(—1,1)}.

Since there exists a linear norm-converting map 7' between the two block
norms /i and /., (see[7]), we can use al algorithms which we will develop for I3
automatically for /., too.

The importance of polyhedral gauges becomes even clearer if one notes that,
since a convex set can be approximated by a convex polyhedron to within any
specified e-degree of tolerance (see[21]), the following results hold.

THEOREM 2.1. The class of polyhedral gaugesis densein the set of all gauges.

COROLLARY 2.2 (see[22]). The class of block norms is dense in the set of all
norms.

In the following we will only look at polyhedral gauges.

2.3. ABOUT THE OBJECTIVE FUNCTION

We can reformul ate the objective function f in the following way:

f(X) = Z Wi Ym (X — ETm) — Z (—wm)ym(X — Ezp) ,
meM+ meM=

where M+ .= {m : wp, > 0tand M~ = {m : w, < 0}. Thistype of
functionsis well known in global optimization and is called d.c. functions, which
stands for difference of convex functions.

If both index sets M™ and M~ are non-empty, the objective function f is
neither convex nor concave, which means there may exist several local minima
and we have to find out which of them isthe global one.

Itisclearthat if thetotal weight of facilitiesbelongingto M~ becomestoolarge,
the minimum will be —oco. This is made more precise in the following theorem:

THEOREM 2.3 (see[3]). Let W = > wyp,.

meM
Then the following holds:

e For W > 0the optimal location isfinite,

e For W < Othe optimal solution is at infinity,

e For W = 0 theresult depends on the input data and the metric, so no general
result can be formulated.

We can also give a sufficient condition for the optimality of an existing facility:

THEOREM 2.4 (see[2]). If am* existswith wy,« > > .cm |wm|, then Ex,,- is
mZm*
the optimal location.
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As a consequence we only have to look for problems with W > 0, when we
aresolving 1/ P/wp, 2 0/vm/ Y.

2.4. LEVEL CURVESAND LEVEL SETS

In the following we will introduce level curves and level sets and reformulate
restricted and unrestricted location problems using these concepts.

For afunction » from R? to R, and z € R thelevel curve L_(z) and the level
set L<(z) isdefined by

L_(z):={X €R?: h(X) = 2}
and
L<(z) = {X €R?: h(X) < 2}

respectively.
Using level curves and level sets we can reformulate 1/P/w,, 20/ e / o
and1/P/R, wy, 20/ e/e.

THEOREM 2.5.

a) z* isthe optimal objectivevalueof 1/P/w,, = 0/ e /e

& 2* =min{z : L_(z) # 0}.

b) 27 isthe optimal objective valueof 1/P/R, w, =0/ e /e
& 25 =min{z: L_(z) N F #0}.

c) Ina) and b) L_(z) can bereplaced by L<(z).

Using this theorem we can implement a search procedure to values of z until
the optimality conditionsare satisfied or any other stopping criterion terminatesthe
procedure. However this is not very satisfactory but we will see in the following
sections that level curves and level sets lead to efficient discretization procedures

fOI’l/P/wm 20/'7m/zand1/P/Ra Wm 20/%@/2

3. Solving1/P/wy, = 0/vym/ >

Now, we consider the unrestricted problem under polyhedral gauges. We do not
assume the same gauge for every Ez,,, m € M.
First the structure of the level curveswill be examined.

THEOREM 3.1 (see[17] or [22)).
The polyhedral gauge v, islinear over theconeI'y?, for g = 1,..., G(m).

Let 7 = (pm)mer beafamily of numbers such that p,,, € {1,...,G(m)} for
al m € M andlet

Cr= () (Bzm+1p)
meM
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acell

Figure3.1. Anexamplefor theset C.

A convex set C, with int(C) # (), issaid to be a cell if there exists afamily =
suchthat C, = C (see[5)]).

REMARK . Geometrically we obtain all cellsif wedraw for every Ez,, € Ex all
haflinesd,, g = 1,...,G(m) starting at Ex,.

The set of al cellsis called C. For an example of such a system of cells see
Figure 3.1.

THEOREM 3.2. The level curves of f(X) with polyhedral gauges are linear in
eachC € C.

Proof. With Theorem 3.1 we have v, (X) is linear in each cone I';’. Since all
cells areintersections of such cones, 7,,, (X)) islinear ineach cell C' € C.

For X € C we can therefore write

f(X) = Z Winlm (X — Ezm) ,
meM

wherethel,, arelinear functionsin X. It followsthat f(X) = z islinearin C.

It is clear that by definition R?2 = Ucec. Now we can characterize the set of
local optimafor 1/ P/wy, = 0/ym/>_. O

THEOREM 3.3.

A connected component of X°¢(f) with level z is either
e acompletecell
e afacet of acell or
e an extreme point of a cell.
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Proof. Follows directly from Theorem 3.2 and the linearity of the objective
function f inacell. O

COROLLARY 3.4. For finding X*(f) or X'c(f), it suffices to look at the
O(M?(max,,c ¢ G(m))?) extreme points of all cells.

Let

G(m)

"= { U E:vm—i—d;”} ,
meM | g=1

i.e. theunion of all points on halflinesin the direction of all Y € Ext(Bfnﬁm) for

all existing facilities. The halflines formed by 7 are called construction lines. The

set of intersection points generated by 7 is denoted Z. Note that Z equals the set

of extreme points of al cells.

EXAMPLE 3.1. We are given four existing facilities Ezq = (0.5,0.5), Bz, =
(3,9), Ex3 = (7,3) and Ex4 = (11, 7). The corresponding weightsare w; = 4.1,

wp = w3 = —1 and wy = 2.9. Each facility Fx,, is assigned a different gauge
¥m, defined by the extreme points of B,,, form = 1,...,4, where Ext(B;) =
{(17 1)7(_17 1)7(07_1)}1 Ewt(Bz) = {(17 1)7(_17 1)7(_17_1)7(17_1)}’

E:L"t(Bg) = {(07 1)7 (_17 _1)7 (17 _1)} and E:Et(B4) = {(07 1)7 (_17 0)7 (07 _1)7
(1,0)}. To find the set of optimal locations X™*(f) , we have to inspect all points
in Z. Theseintersection points together with the corresponding objective value are
givenin the following table.

XeT (-6,7) (-2535 (05-35 (0505 (1,7) (3,9 (57) (6,6

f(X) 36.6 58.3 30.3 37.65 4985 3405 3195 6025

Xez (1,3) (7,5 (7,7 (7,13) (11,-1) (11,1) (11,7) (11,11) (11,17)

f(X) 3695 4625 3025 6625 10145 8745 3945 30.65 66.65

From this table we get that the optimal solution is in this example a single point,
X*(f) = {(7,7)} with objective value 30.25. In Figure 3.2 a graphical represen-
tation of the major part of this example is shown.

4. Solving1/P/R, wy = 0/vm/ >
4.1. PRINCIPAL TECHNIQUES

To describe a general solution procedure for the restricted problem we need to
know a little bit more about the structure of the level sets of f. Remember that
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Figure 3.2. The existing facilities as well as the magjor part of the sets H and I of Example
3.1

we exclude a connected region in R? and so we have in general to optimize a
non-convex objective function over a non-convex domain. From Theorem 3.2 we
know that the level curves are piecewise linear independent of the value of W,
the sum of all weights. For the level sets L<(z) the situation is a little bit more
complicated.

THEOREM 4.1. Thelevel sets L<(z) for the objective function f have the follow-
ing form:

W > 0 The level curves L_(z) are closed polygons and the corresponding level
sets L« (z) are the bounded sets defined by the boundary L_(z).

W < 0 The level curves L_(z) are closed polygons and the corresponding level
set L< (z) istheunbounded exterior of thelevel curve L—(z),i.e. L<(z) =
R?\int(LZ(2)), where LZ isthe level set with respect to —f.
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Proof.

W > 0 By Theorem 2.3 the optima solution is finite and by Theorem 3.3 the
structure of alocal optimum is known. By the piecewise linearity of the
level curves (see Theorem 3.2) and the finiteness of the local optima the
level curves are closed polygons around these local optima and the level
sets have to include these local optima.

W < 0 The validity of the statement follows by multiplying f by —1. Now we
have W > 0 and we are in the first case. Since — f(z) > z is equivalent
to f(r) < —z theresult follows. O

REMARK . Forthel;-case, with W = 0, itisshownin[4] that thelevel curvesare
horizontal or vertical lines outside the convex hull of Z. (Z isthe set of intersection
points defined by #). Thereforein the case W = 0 the level curves need not to be
closed anymore.

Now we will look at several types of forbidden regions:
First the forbidden region is assumed to be any bounded convex set, second we
consider any closed polygon (not necessarily convex) and third we look at the
complement of a closed polygon as the forbidden region. In al situations we
distinguish between the three cases W > 0, W < 0 and W = 0. Notice also that
we excludethe trivial case where an optimal solution for the unrestricted problem
isalso feasible for the restricted problem, i.e. X*(f) N F # 0.

THEOREM 4.2. X isanoptimal solutionof 1/ P/R, wy, 2 0/vm/ > (X € X% (f))
with f(X) = z if and only if thereexistsa z € R, such that

a) X € xXlc(f)n F and

z=min{f(Y) : Y € X°(f)n F} 4.1)
or
b)

L_(z)NOR #0 4.2)
and

L<(z) CR. (4.3)

Of course, both cases may coincide.

Proof. If Case a) is fulfilled we get the best feasible local minimum which
is then of course globally optimal. For Case b) note that we can conclude from
Theorem 3.2 and Theorem 4.1 that int(L<(z)) = L<(z) for z > z*, where z*
is the global minimum of f. Suppose now (4.2) and (4.3) hold and there is no
X € Xxloc(f) satisfying (4.1). Then every level set with a smaller level than z is
completely infeasible and every level set with alarger level than z is not optimal.
So the cases a) and b) are sufficient for showing X to be optimal.
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Now suppose we have an optima X with f(X) = z and neither Case @) nor
Case b) holds. We can not have a better locally optimal solution Y € F, because
then Case a) would hold. Since X € F and also Case b) does not hold we have
that int(L<(z)) N OR # () and therefore we have feasible points on the boundary
with a better objective value than X. So X can not be optimal if neither Case a)
nor Case b) isfulfilled. O

Note that the proof doesnot only hold for the Weber objective function, but also
for other objective functions, like the center objective.

4.2. R ISA CONVEX SET

Here we only have to consider caseswith W > 0 because for W < 0 the optimal
solutionisnotfinite. Thereforeitisnot very restrictingif weassumein thefollowing
that the optimal solution isfinite.

Based on Theorem 4.2 the following procedure can be used to solve 1/P/R,
wy, 20/ e /3.

ALGORITHM 4.1. (Level Curve Approachfor Solving1/P/R, w,, = 0/e /")
1. Find level curve L_(z;) satisfying (4.2) and (4.3).
2. Find level z; satisfying (4.1).
3. fz1 <z let X (f) := L=(z1) N OR.
4. 1f 20 > 2o let Xf,*z(f) = L:(Zz) nF.
Output: X% (f).

The level curve approach can be implemented applying a search procedure to
values of z until (4.2) and (4.3) or (4.1) is satisfied or any other stopping criterion
terminates the procedure. This implementation of the procedure is, however com-
putationally unsatisfactory, since there is no finite bound on its time complexity
for finding the exact solution.

On the other hand, this approach leads in the case of polyhedral gauges to
efficient procedures for solving restricted location problems, as we will seein the
following.

THEOREM 4.3. Let W > 0, let R be a bounded convex forbidden region and
let X*(f) N F = 0. Then there exists an optimal location X3, € Xj(f) with
X5» € HNOR or X4 isthe best local minimumin F.

The first part of the proof is analogous to Theorem 5.2 in [8] and the second
part was shown in Theorem 4.2.

So we get the following ideafor an algorithm:
Solve the problem with the algorithm for the unrestricted problem; if X*(f)NF #
) — Stop.
For X*(f) N F = () we have to determine all feasible local minima and the inter-
section points of OR with the construction lines. By comparison of the objective
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values at these points we find the best feasible solution. If all optimal locations
should be determined and the optimum is at an intersection point # with R, we
have to compute the level curve and determine the intersection of the level curve
with the boundary of R.

More formally this reads as

ALGORITHM 4.2. (ConstructionLineAlgorithmfor thel/P/R, wp, 20/vm/ >°)

1 if X*(f) NF # 0 then X5 (f) := X*(f) N F — Stop.
2. Compute H.
3. Determine {X7,..., X;} =INF.
4. Determine {Y3,...,Yx} = HNIR.
5 Let X3 € argmin{f(Y1),...,f(Yk), f(X7),..., f(X})} and let L be the
level curve through X7, if X3,  TNR.
Output: if X5 ZNR
then X5 (f) :=LNOR
dlse X5(f) == L-(f(X})) N F.

REMARK . By Theorem 3.3 we can determine all local optima by inspecting all
extreme points of all C' € C and therefore Step 3 of Algorithm 4.2 is correct.

We have not more than O(M?(max,,crq G(m))?) local optima (see Corol-
lary 3.4) and not more than O (M max,,c ¢ G(m)) intersection points. The evalu-
ation of the objective function takes O (M (max,,cp G(m)). Therefore the algo-
rithm has a complexity of O(M3(maX,,cr G(m))3).

EXAMPLE 4.1. We use the same input data as in Example 3.1. Additionally we
aregiven R := [4,9] x [4.5,8.5]. The intersection points H N 9R together with
the corresponding objective value are given in the following table.

X eHNOR (4,7) (4545) (7,45) (7545 (9,7) (8585) (7,85) (4,8)

f(X) 3495 315 4975 514 3485 304 3925 4195

From this table and the table in Example 3.1 reporting the objective values for
al pointsin Z we get that the optimal solution is in this example a single point,
X5 (f) ={(0.5,0.5) = Exz1} with objective value 30.3. In Figure 4.1 a graphical
representation of this exampleis shown.

If we change the location of Ez1 to (2, 2) the optimal solution of the modified
restricted location problemis (8.5, 8.5) with objective value 24.25 on the boundary
of R.
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Figure4.1. lllustration of Example 4.1.

4.3. R IS A BOUNDED POLYGONAL REGION

Let R = P, P any polygon, i.e. not necessarily convex. In this case we have to
extend the candidate set by the set of vertices of the polygon P because of the
following resullt:

THEOREM 4.4. Let W > 0 (with finite optimal solution for f) and R = P any
polygon with vertex set V(P) = {V1,...,Vx}andlet X*(f) N F = 0.

Then there exists an optimal location X5 € X% (f) with X5 € H N oR or
X% € V(P) or X} isthe best local minimizer in F.

Proof. Let X3, € OR N L-(z}) (condition for an optimal location, which is
not a local optimum in F according to Theorem 4.2), C' € C with X5 € C,
L¢ = L=(z)NC and Py;y;, , defined asthe segment between V; and V; ;1 (facet
of the polygon)

Then we have the following possibilities for X%:

Casel (seeFigure 4.2a) The slope changesat X7, s0 X7, € H.
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Figure 4.2. lllustrations for the different casesin the proof of Theorem 4.4

Case?2 (seeFigure 4.2b) X7, isavertex of P.

Case 3 (seeFigure4.2c) L isasupportinglineon P in X5 and L C Py,v,, .
Then there exist two points Y3 and Y, € L_(z%) N OR, where the slope
changes, so we can replace X5 by Y7 or Y.

Case4 (seeFigure4.2d) L¢ isasupportinglineon P in X% and Le 2 Py;v;, -
Then X7, can bereplaced by V; or V; 1.

Case5 (see Figure 4.2e) L isasupporting lineon P in X5, but neither Lo C
Pviv;,, nor Lo 2 Py,v,,, (i.e. Lc and Py,y,,, overlap). Thenthere exists
avertex V; € L_(z) NOR and apointY € L_(z3) N OR, where the
slope changes, so we can replace X 5, in this case too. O

4.4, R 1STHE COMPLEMENT OF A CLOSED POLYGONAL REGION

THEOREM 4.5. Let R := R?\P with P being a polygon with vertex set V(P) =
{V1,...,Vn}, i.e.wehaveafeasibleregion 7 = P for the new location. Further
X*(f)NnF = 0.
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e For W > 0 and if the optimal solution of the unrestricted problem is finite
the following holds: There exists an optimal location X € X3 (f) with
Xn € HNOR or X3 € V(P) or X5, isalocal minimizer in P.

e For W < 0and if the optimal solution of the unrestricted problemis not finite
we have: There exists an optimal location X7 € X% (f) with X3, € HNOR
or X3 € V(P) or X% isalocal minimizer inP.

The proof is analogousto the proof of Theorem 4.4 and is therefore omitted here.

REMARK . We also had to consider the case W < 0, because the solution at
infinity is not feasible.

5. TheRectilinear Case

In this section we will show that for special distance measures better algorithms
canbederived. Thereforewe assumeinthefollowing that y,,, = I3, forall m € M.
5.1. SOLVING 1/P/wy, 2 0/11/ "

Now we consider as metric the rectangular distance, so we have d,,, = I for all
m € M. In this case the construction lines H are horizontal and vertical lines
through the co-ordinates of the existing facilities. So we get a decomposition of R?
in rectangles. For the objective function we get:

FX) = Y wmllam — za| + |bm — z2|)

meM
= Z Wi |am — 21| + Z Wy [bryy, — 22| (5.1
(nGM . InEM .
= fa(z1) = fo(72)

One can see that the original problem can be divided in two equal subproblems,
which can be solved independently:

fu(z) = Z Wi |Vm — x|, Wwherev € {a,b} .
meM

Assume without loss of generality 1y < vo < ... < vy
Thefirst stepistoremovetheabsolutevalues, sowedeterminep(z) := max{q|v, <
x,q € M} and reformulate the objective function:

p(z) M
fulz) = W (T — vp) + Z Wi, (Vi — )
m=1 m=p(z)+1
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Vo

/

Vy

Figure5.1. Examplefor f, (z) with 4 existing facilities

The objective function isa piecewiselinear function, where the slope changesonly
a v, (the dopeis constant between v,,, 1 and v/,,,). Therefore, if the minimum is
finite, it can either be at a co-ordinate of an existing facility or — if the slopeis 0
between v,,,_1 and v,,, — inthewholeinterval between two successiveco-ordinates
of existing facilities.

To make this result clear, we look at the following sketch of f,(z) with 4
existing facilities (Figure 5.1).

Here we can see, that the derivative from the |eft and the right are important.

Derivatives:

m M
Derivative from theright: f,F () = > wi— > w;
i=1 i=m+1

m—1 M
Derivative from theleft:  f, () = Y wi — Y w;
i—1 i=m

It follows:
b fqu(Vm—l) = fzj(’/m)
o f, (1) =— i]\ilwi =-W
M

o fifvm) = ity wi =W
THEOREM 5.1. We have only the following two possibilities for the set of mini-
mizers X*(f,):
a) [, (vm=) < 0and f;F (=) > 0. Then X1°¢(f,)) = v« With wy,« > 0.

b) £, (vm+) < O, ff(vm) = 0 and fFf(Fm-11) > O. Then X'°(f,) =
[Vm* s Vm* 1] WIth wp«, w11 > 0
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Proof.
M m*—-1 M
a f, (vm)<0& ( Z e wi><0(:> (— Yo owi+ Y wi> >0
i=m* =1 i=m*
(@)

m* M
f;r(ljm*) > 0 (Z’U)l — Z ’LUZ') >0 (2&)

=1 i=m*+1

(1) + (2a) yields wp,« + wp > 0 & wp« >0

b) z € [Vm~, Vm=41]

m* M
ff(m) =0& (Zwi— > wi> =0 (2b)

i=1 i=m*+1
m*+1 M
I (Wmey1) >0& Z w; — Z w; | >0 (3)
i=m*+2
(1) + (2b) yields wy,« + Wy > 0 wpys >0
(3) — (2b) yieldS Wy 41 + W11 > 0 & Wyesy > 0 O
THEOREM 5.2.

a) vy~ isalocal minimizer & f7(Ume) <0 and  wps > 3f, (Vime)

b) [Vim+, Um=11] isalocal minimizer < f, () <0, Wy = 3f, (V)
and wy,«41 >0
Proof. Using the preceding results the following holds:

M
fz/ Vm Z wy — Z w;

zm*

Vm* Z w; — E wy

i=m*+1
So we get:
fj(’/m*) - f;(”m*) = Wy + Wnx = 2Wp & fj(’/m*)
= [, (Um=) + 2wp,-

U local minimizer & £, (vpm+) < 0and f,f (v=) > 0

L )

fF(wme) >0 f, (Um+) + 2w > 0 wpys > >
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(Ve Ve +1] local minimizer & £, (vin-) < 0, £ (V) = 0and f3f (- 12) > O

f;(ym*) =05 [, (Vm+) + 2wp =0 wyy« = —%fy_(l/m*)

frjr(ym“rl) >0 frjr(ym*) +2wpr 41 > 06 wppeq1 >0
—_——
=0
O

With these resultswe can now formulate an algorithm. Theideaof thealgorithm
isasfollows: First we check the input data for the conditions of Theorem 2.3 and
Theorem 2.4 respectively. If we do not find a solution by this way, we start the
following procedure: We check iteratively the derivatives of all existing facilities
for finding the local minimizers. Assoon aswefind alocal minimizer, we compare
the value of the objective function with the best value for the objective function we
found before. We update the objective value if the new value is better than the old
one. If two locations with the same objective value exist, we store both of them.
With this O(M log M) procedure we can find all global minimizers.

ALGORITHM 5.1. (Minimization of f,(z))
Input: wy,, v,
Output: X*(f,), Z,

1. W .= Z W,

meM
if W < 0 — stop: the solutionis at infinity
else — goto step 2.
2. if awp > 0 existswith wy,- > > 4 ) |wp,| — Stop
Output: X*(f,) = {vm-} and 2z}, = f,,?l/m*)
3. ifry <...<wy — goto step 4.
else — sort the existing facilities and sum up the weights of equal co-ordinates
—>I7:(171,...,I7M), ’LI):(’LI)]_,...JI)M) with 171<...<I7M
4, fr(n)=-W = F~
X*(f,) =0,z :=1(in)

Vi1 -= ©

form=1,...,M do
if F~ <0and 1y, > —3F :

determine f(7,)

it f(im) < 250 25 = f (), X*(F,) = {m}

it [ (0m) = 252 25 = [ (), X*(F,) = X*(£,) U {7}
if F~ < 0and Wy, = —3F~ and (@41 > 00r m = M):

determine f (2,

if [ (i) < 252 25 == f (), X*(F,) = {[my D]}
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if f(Om) =25 25 = f(Un), X*(f,) = X*(f,) U {[Pm, Pmra]}

F~ = F + 2w,
m:==m-+1
5. 1fp e X*(f,)andW =0:  x*(f,) := x*(f,) U{(—o0, 1]}
Output: X*(f,) with objective value 2,

To solve the original problem, we use this algorithm for both subproblems and
link the two optimal sets.

ALGORITHM 5.2. (Solution of 1/P/w,, = 0/11/ Y)
1. Use Algorithm 5.1 for f,(z1) and f;(z2)
— X*(fa)a X*(fb)a 227 Z;
Output: z* = 2z} + 25, X*(f) = X*(fa) x X*(fp)

5.2. SOLVING 1/P/R,wp, =z 0/l11/ Y

Aswe have seen in the general casein Algorithm 4.2 we need all local minima of
the unrestricted case. Therefore, we have to modify Step 4 of Algorithm 5.1 in the
following way:

Modification of step 4 of Algorithm 5.1 (Determination of all local optima)
F=-W

xXle(f,) =0, 2 =10

If W =0andw; > 0:

Xloe(f,) = {(—o0, 1]}

7 = {f ()}

VRrp1 -=

Form=1,...,K do

if F~ <0and 1, > —3F":
xtee(f,) i= Z1°(f,) U{im},  20¢ = 2l° U {f (0m)}
if F~ < 0and 1, = —3F~ and (@41 > 00r m = M):

X100 (fy)) 1= X1 f) U{ [Py Omal}s 207 1= 200 U{f (m)}

F~ =F + 2w,
m=m-+1
Output: X'¢(f,) set of local minimizer, z/°° objective values

With this modification we get the following O(M? log M) agorithm:
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ALGORITHM 5.3. (Solutionof 1/P/R, wy, = 0/l1/ ")
Input: wy,, Bz,
Output: X% (f), 2%
1. Use Algorithm 5.1 with the modification of step 4 for the two subproblems:
We get X17°(f,), X1%°(fy), 249, 212 wiith |21¢] = o1, |2{°°] = o
2 Fork=1...,00, I=1...,02d0:
e A L ()
3. Sort X'o¢( ) with zL9¢ increasing:
— Xloe(f)ywith zlee < ... < 79¢ (O = 01 % 0p)
4. Determine the best element(s) X'o¢, which is (are) located in F:
X’]*Z(f) = {(dk*abl*)}a Z:]kz = z}go*cl*
5. DetermineY ;== HNOR,|Y| =L

6. fori=1,...,L do:
determine f(Y;)
@ if £(¥) < 2:
(i) 25 = f(Y))
(i) X5(f) = {¥3}
(iii) if al optimal solutions should be determined:
— compute L—(z}) NOR
— X(f) = {X[X € () N OR}
— If W = 0 then compute L_(z5) N F and
Xr(f) ={X|X € L=(2x) N F}
(b) if f(Yi) = 2%
(i) Xz (f) = Xr(f) U{Yi}
(i) if al optimal solutions should be determined:
— compute L—(z}) NOR
— Xz (f) = X (f) U{X|X € L=(2) N OR}
— if W = 0then compute L—(z3) N F and
Xr(f) ={X|X € L-(2%) N 7}
Output: X% (f) optimal solution, 25 objective value

5.3. AN ILLUSTRATIVE EXAMPLE

We now give an example for the rectangular metric:
Bz =1{(1,3),(2,1),(4,5),(5,2),(7,3)}
w=(3,1,-5-1,3 = W=1

So we get as objective function:

f(X)=3(1—z1| +|83—x2|) + (|]2— z1| + |1 — x2]) = 5(]4 — z1]| + |5 — x2|)
— (15— 21| + 2= 22|) + 3 (|7 — z1| + [3— 22|)
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-20 -10 10 20

Figure5.2. function f.(z1)

1,2,4,57)

= G withw, = (3,1, -5, —1,3) = 1,
3,1,5,2,3) =

= (1,2,3,5) with @, = (1, 1,6, —5)

A~ o~

a i
b= b

fa(:vl) = 3|1 — £U1| + |2 - ZL‘1| — 5|4— :L‘1| — |5 — ZL‘1| + 3|7 — :U1|
(seeFigure5.2)

21<1 1<21<22<21<44<21<55<:1<77<1

p(z1) O 1 2 3 4 5

fa(z1) —21+1 5z1—5 Tt —9 —321+31 —5x1+41 z1—1

fb(:L"z) = 3|3 - $2| + |1 - $2| - 5|5 - $2| - |2 - :L"2| + 3|3 - :L"2|
(seeFigure5.3)

To<1l 1<29<22<22<33<22<55< 1,

p(z) 0 1 2 3 4

fb(wz) —I2 — 8 T2 — 10 —I2 — 6 11:132 — 42 o + 8

First we consider the unrestricted case:

Step 4 of Algorithm 5.1 for f,(z1):

Initidization: F, := f(a1) =5, X*(f.):={1}, zf:=0
m=2F =F+2w,=7

m=3F}5=-3
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25
20

15

10

5

-20 -10 10 24
-5

Figure5.3. function f,(z2)

m:5:3>g—>fa(a5) fa(7) =
Output: X*(f,) = {1}, =z:=0
Algorithm 5.1 applied to f(z2) yields: X*(fy) = {1,3} withz; = -9

So we get the solution for the original problem with Algorithm 5.2:

=-5

Ff
a(7) =6(>0)

Next, we introduce a convex forbidden region:
R::{($17$2)| —6<21<3,-6<1< 4}

Step 1: X1°(fa) = {1,7}, zy* = {0, 6}
xlee(fy) = {1,3}, Zl” ={-9-9}

Step 2: Xloc(f) {(1,1,-9),(1,3,-9),(7,1,-3),(7,3,-3)}
Step3: X (f) = X1oe( )
Step4: 4 () = {(7,1),(7.39)}, 7 = (-3)

Step 5: Intersection points of H with OR
={(-6,1 6,2),(—6,3)(1,4),(2,4),(3,3),(3,2),(3,1),
(27 _6)7 (17 _6)7 }
2y = {_27 -1, _27 27 7, 37 4, 37 37 _2}

Output: X% (f) ={(7,1),(7,3)}, 2z = (-3)

Now, the forbidden region is the complement of a closed polygonal region:
F=P:={(z1,22)|3< 21 <8,0< z, <4}

We get V(P) = {(3,0),(3,4),(8,4),(8,0)} with objective values z), = {4, 14,
97 _1}
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Yy = {(81),(82),(33),(4,4),(54),.(7.4),(83),(82),(81),(7,0),
(5,0),(4,0)}

zy =1{3,4,3,21,18,8, -2, -1, —-2,-2,8, 11}

The best feasible points are (7,1) and (7,3) with objective value z; = —3
Solution: X% (f) = {(7,1),(7,3)} and 2z = —

6. Conclusions

We have shown in this paper how global optimization problems which are in
general very difficult can be solved exactly for specia casesin polynomial time.
The methods we used are mainly computational geometry and discretization of
continuous problems. The success of the proceduresrelies heavily on the structure
of the level sets. Future research topics are extensionsto the multi-facility case and
therefore to higher dimensions.
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